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Abstract

A new method for the reconstruction of the particle radius distribution function from the sedimentation curve is proposed. This method
permits us to obtain a continuous smooth distribution function. Two approaches are compared. The first approach is based on the calculation
of the second derivative from the sedimentation curve. The second one is based on the solution of the original integral equation which
describes a sedimentation process. Both of these approaches can be reduced to the problem of the solution of the Fredholm integral equation
of the first kind. From the theory of integral equations, it is known that this problem is ill-posed. The usual methods lead to unstable solutions
and we are forced to use special regularizing algorithms. In this paper, the Tikhonov regularization method is used to stabilize the solution
of the integral equation. It is shown that the accuracy of both methods is higher than the accuracy of the graphical method, but the approach
based on the solution of the original integral equation gives a more stable solution than that based on the derivative. The accuracy of the
new method permits us to reconstruct the fine structure of the particle radius distribution function. Such an analysis cannot be carried out
with the rough bar diagram obtained from the graphical method. The new method is absolutely indispensable in technology for controlling
the degree of powder fineness. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let us consider a polydisperse pulp. We introduce the
radius distribution function of particlesq(r) in such a way
that q(r) dr represents the mass fraction of particles with
radii in range fromr to r + dr (see Fig. 1). By definition
the functionq(r) is normalized as follows∫ ∞

0
q (r)dr = 1 (1)

Let us consider the sedimentation of such pulp. Assume
that we measure the weight of particles settled on the solid
surface at the depthH. One can consider the arbitrary mo-
ment of timet. All particles with a settling rate

u ≥ H

t

(or, equivalently, with radiir ≥ r∗), will settle at this mo-
ment of time. Radiusr∗ is given by the formula

r∗ =
√

9ηH

21ρgt
(2)
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We assume that the particles of the pulp settle at a constant
rate

u = 2

9

1ρ

η
gr2, (3)

where1ρ is the difference between the density of the parti-
cle and the liquid,g is the gravitational acceleration, andη is
the viscosity of liquid. Then we introduce the mass fraction
of totally settled particlesQ as follows

Q =
∫ ∞

r∗
q (r)dr = 1 −

∫ r∗

0
q (r)dr (4)

Particles with radiir < r∗ will settle partially. Let us con-
sider particles with radii fromr to r+dr. The mass fraction
of these particles is equal toq(r) dr and their sedimentation
rate is given by Eq. (3). Only particles which were initially
in the column of liquidh = ut in height will sediment at the
moment of timet. Thus, the mass fraction of the partially
sedimented particles with radii betweenr andr + dr equals

dS = h

H
q (r)dr = 2

9

1ρ

η

g

H
tq(r) r2 dr

The total weight of these particles is given by the finite
integral
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Fig. 1. Normalized radius distribution function of particles:q(r)dr rep-
resents the mass fraction of particles with the radii in range betweenr
and r+dr, Q(r∗) represents the mass fraction of particles with the radii
greater thanr∗.

S = 2

9

1ρ

η

g

H
t

∫ r∗

0
q (r) r2 dr (5)

The total weight of the sedimented particles is equal to

P = Q+ S = 1 −
∫ r∗

0
q (r)dr

+2

9

g1ρ

ηH
t

∫ r∗

0
q(r)r2dr (6)

Introducing theθ -function,

θ (z) =
{

1 if z ≥ 0
0 if z < 0

reduces Eq. (6) to a Fredholm integral equation of the first
kind∫ ∞

0
q (r)

(
1 − 21ρgtr2

9ηH

)
θ

(
r∗ − r

)
dr = 1 − P(t) (7)

The right-hand side of Eq. (7) is known from the experi-
ment (with some error). One can solve this integral equation
directly, but there is another way. Calculating the second
derivative from Eq. (7) yields the explicit expression

q
(
r∗

) = −2
t2

r∗
d2P

dt2
(8)

The common method of reconstructing the particle size
distribution function from the sedimentation curve is the
following. One can draw tangent lines to the sedimentation
curve (see Fig. 2). The tangent line interceptq represents
the mass fraction of totally sedimented particles at the cor-
responding moment of timet. Hence, the interval|q2–q1|
represents the mass fraction of liquid-born particles with
radii in the range betweenr1 andr2. The particle equivalent
radius is given by Eq. (2), wheret must be taken equal to
the abscissa of tangency point. This procedure is no more
than a graphical method of a second order difference cal-
culation. Nothing but a rough bar diagram can be obtained
by this method. Also, the graphical method has low accu-
racy. We need a method which will give a possibility to

Fig. 2. Sedimentation curve. Tangent line interceptsqi represent mass
fractions of totally sedimented particles at the corresponding moments of
time.

reconstruct a smooth size distribution function using a sed-
imentation curve and will be free of the inaccuracy of the
graphical method. There are two approaches to the solution
of this problem: (a) to solve directly the integral Eq. (7);
or (b) to calculate numerically the derivative of the second
order from the sedimentation curve and to substitute it in
Eq. (8). As we shall see below, both of these approaches
are reduced to the solution of a Fredholm integral equation
of the first kind. The solution of this equation represents a
good example of a so-called ill-posed inverse problem. The
ordinary methods do not work here because they lead to un-
stable solutions and, one way or another, we are forced to
use a special regularizing procedure.

2. Statement of the problem

Calculation of the derivative from an experimental func-
tion f(x) obtained with errors represents a complicated
mathematical problem. The main difficulty is the following.
During the experiment, we can measure only a function
f (x)+ε, whereε is a noise. The second term does not have a
derivative in the classical meaning. If we make an attempt to
calculate the derivative by the usual methods, we shall obtain
an alternating-sign saw-tooth function of high amplitude and
the real derivativef′(x) will ‘sink’ in the noise generated by
the second term. The problem of derivative reconstruction
from experimental data is discussed in detail in Parchevsky
[1] and Parchevsky and Parchevsky [2]. It is shown that
special regularizing algorithms must be used for obtaining a
smooth derivative. The appropriate method is the following.
One can write an integral equation for thek-th derivative

∫ b

a

(x − ξ)k−1

(k − 1)!
θ (x − ξ) f (k) (ξ)dξ

= f (x)−
k−1∑
j=0

f (j) (a)

j !
(x − a)j , a ≤ x ≤ b (9)

Hence, our problem in both cases is reduced to the solution
of a Fredholm integral equation of the first kind. It can be
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rewritten in general form as follows

Ay ≡
∫ b

a

K(x, ξ)y(ξ)dξ = f (x), c ≤ x ≤ d (10)

The first equality sign in Eq. (10) can be considered as the
definition of the operatorA. If we try to solve directly the
integral Eq. (7), the kernelK(x, ξ ) and the right-hand side
f(x) must be chosen as follows:

K (t, r)=
(

1 − 21ρgtr2

9ηH

)
θ

(
r∗ − r

)
f (t)= 1 − P (t) . (11)

If we want to use Eq. (8), we must calculate the second
derivative firstly. To obtain the derivative, we have to solve
Eq. (10) with the following kernel and the right-hand side

K(x, ξ)= (x − ξ)θ(x − ξ),

f (x)= P(x)− P(0)− P ′(0)x (12)

3. The concept of an ill-posed problem

Let us focus our efforts on numerical methods of solu-
tion of the integral Eq. (10). Assume that the right-hand side
f(x) and the kernelK(x,ξ ) are known functions. The kernel
K(x,ξ ) can be specified either analytically or as a two dimen-
sional array of experimental points. Usually, the right-hand
side of Eq. (10) is known from the experiment in the form
of N-vector

(f (x1) , f (x2) , . . . , f (xN))
T (13)

The most straightforward approach to solve Eq. (10) is the
following. One can replace the integral by a finite sum using
the quadrature formula of rectangles or trapezoids. Next,
instead of the integral Eq. (10) we must solve the system of
linear equations

N∑
j=1

aijyj = fi, i, j = 1, 2, . . . , N (14)

whereaij are the elements of the squareN × N matrix A
which approximates the kernelK(x,ξ ), fi is the vector of the
original data, andyi is the vector of the solution. However,
such a simplified attack to the problem does not give an ac-
tual solution and only an alternating-sign saw-tooth function
can be obtained. Nevertheless, after substituting this solu-
tion in the left-hand side of Eq. (10), it coincides with the
right-hand side in the first four to sox digits. If we increaseN
(and the accuracy of the approximation of the integral equa-
tion should seem to increase), the solution becomes more
and more unstable and the amplitude of fluctuations raises
rapidly. The nature of the instability of the solution obtained
by applying the quadrature method is the following. It can be
shown Verlan and Sizikov [3] that the smallest eigenvalue of

the integral operatorA (in absolute magnitude) equals zero.
When the integral Eq. (10) is approximated by means of the
system of linear equations of low orderN (e.g.N < 10),
the eigenvalue spectrum of the integral operator is strongly
distorted. The smallest eigenvalue of the matrix of the sys-
tem (in absolute magnitude) is significantly different from
zero. In this case the solution obtained is sufficiently stable
but, on the other hand, it is very rough because the order
of the system is low. If we increaseN, the spectrum of the
matrix will approximate the spectrum of the integral opera-
tor better and better. The determinant of the matrix will be-
came vanishingly small as the smallest eigenvalue of the ma-
trix goes to zero, and the solution becomes more and more
unstable.

It is a vicious circle. If we reduce the degree of an ap-
proximation of the integral equation by choosing a lowN
we can solve the corresponding system of linear equations,
but this solution will be far from the actual one due to rough
approximation. In this case the spectrum of approximated
matrix has nothing in common with the spectrum of the
original integral operator. If we try to approximate the orig-
inal integral equation more precisely we will not be able to
solve the corresponding system of linear equations because
the determinant of this system will be vanishingly small. We
say that the problem of the solution of the integral Eq. (10)
is ill-posed.

The concept of ill- (or well-) posed problems goes back
to the work of Hadamard [4,5]. The problem is called
well-posed if: (1) a solution of the problem exists; (2) the
solution is unique; (3) the solution is stable (this means
that small variations of the initial data give rise to small
variations of the solution). If any one of these conditions is
violated the problem will be called ill-posed. The problem
of the solution of Eq. (10) is ill-posed because the solution
is not stable (item (iii) is violated). Even very small vari-
ations of the right-hand sidef(x), for example caused by
rounding errors, can generate errors in the solution 100-fold
greater than the solution itself. Many important applied
problems are ill-posed, so new algorithms were developed
for their solution.

4. Tikhonov’s regularization method

The main idea of this method is the following. We reduce
the set of functions among those from which we find the
solution of our problem. Let us return to our integral equation
and consider the problem of the solution of Eq. (10) by the
quadrature method from this point of view. We tried to find
any (even discontinuous) solution of the integral equation.
We did not impose any constraints on the solution and we
have found such a (discontinuous) solution. We did not use
all the additional information in the problem statement. If we
know that the solution has to be continuous and smooth we
must seek it initially among continuous smooth functions.
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In general, we can say that the occurrence of the addi-
tional a priori information about the solution of the ill-posed
problem plays a crucial role during its solution. If we have
no additional information about the solution we can obtain
nothing but the notorious saw-tooth function as a solution.
We can have so much additional information about the so-
lution that the problem can be converted from ill-posed to
well-posed. If we know in advance that the solution is rep-
resented by an exponential function (for example) we need
only fit the coefficients by the least square method. Gen-
erally speaking, the more additional information the more
stable the methods that can be used to solve the problem.

However, it is dangerous to introduce false a priori in-
formation. Trying to make his problem easier to solve the
researcher can impose too restrictive constraints without
sufficient warranty. If the false additional information is
used, one can say in advance that we shall obtain the wrong
solution because we solved a completely different problem
from that initially posed.

Different methods of regularization require for their im-
plementation different amounts of additional information.
Algorithms which require minimum additional information
for their implementation are preferable. A new approach,
developed by Russian academician Tikhonov (Tikhonov and
Arsenin [6]), permits us to obtain regular solutions of the
ill-posed problems and requires the minimum a priori infor-
mation. There is an English translation of this book Tikhonov
and Arsenin [7].

Assume, that instead of the exactK(x,ξ ) andf(x) we know
their approximate values̃K (x, ξ) andf̃ (x) so that

‖f̃ (x)− f (x)‖ ≤ δ (15)

‖K̃(x, ξ)−K(x, ξ)‖ ≤ h, (16)

i.e. actually we solve the following equation

∫ b

a

K̃ (x, ξ) y (ξ)dξ = f̃ (x) (17)

A tilde is used to designate the values which are known
from the experiment. The norm of a function‖·‖ can be
defined as

‖f ‖ =
(∫ b

a

f 2(ξ) dξ

)1/2

(18)

In functional analysis, functions are considered as
‘vectors’ of a functional space and the norm of a function
is considered as the ‘length’ of this ‘vector’. Therefore,
Eq. (15) expresses the fact that the maximal ‘distance’
between the exact right-hand side and the experimentally
measured one does not exceedδ. Similarly, Eq. (16) tells us
that the maximal estimation error of the kernel of integral
equation does not exceedh. The values of these errors play
the role of that additional information which is required for
Tikhonov method.

In this algorithm the solution is sought as a function which
minimizes the smoothing functional

Mα[y] = ‖Ãy − f̃ ‖2 + α�[y] (19)

where the positive stabilizing functional�[y] is usually set
equal to

� [y] = ‖y‖2 (20)

andα>0 is the parameter of regularization. It can be proved
that the problem of minimizing of Eq. (19) has a unique
solution. It is necessary to emphasize that Tikhonov algo-
rithm is no more than a generalization of the least squares
method. In fact, we seek the functionyα(x) which mini-
mizes the sum of squared deviations of the right-hand side
of Eq. (17) from the left-hand side (i.e. the discrepancy) and
has the minimal norm (‘length’). This problem on the con-
ditional extremum can be solved by the method of indefinite
Lagrangian multipliers and the parameterα is associated
with such a multiplier. If we setα = 0 we shall return to
the usual least squares method (without requirement of min-
imizing the norm of the solution). If we apply the method
discussed above to the solution of integral Eq. (17), we can
write Tikhonov and stabilizing functionals as follows

Mα [y] =
∫ d

c

(∫ b

a

K̃ (x, ξ) y(ξ)dξ − f̃ (x)

)2

dx

+α� [y] (21)

� [y] =
∫ b

a

(
y2 (ξ)+ q

[
y′ (ξ)

]2
)

dξ, q ≥ 0 (22)

The variational problem of the conditional minimization
of Eq. (21) can be reduced to the solution of the following
Euler equation

α
[
yα (t)− qy′′

α (t)
] +

∫ b

a

R (t, ξ) yα (ξ)dξ

=
∫ d

c

K̃ (x, t) f̃ (x)dx, a ≤ t ≤ b (23)

R (t, ξ) = R (ξ, t) =
∫ d

c

K̃ (x, t) K̃ (x, ξ)dx (24)

with the boundary conditionsy′
α(a) = y′

α(b) = 0. There-
fore, instead of the ill-posed Eq. (17), we must solve the
well-posed integral (ifq = 0, zero order of regularization)
or integro-differential (ifq 6= 0, first order of regularization)
Eq. (23). Approximating integrals in Eq. (23) by quadra-
ture formulae, we obtain a system of linear equations with
a well-conditioned matrix. Parameterq gives us a possibil-
ity to control the order of regularization. The increasing of
regularization order means imposing stronger restrictions on
the smoothness of the solution. The greater order of regu-
larization, the greater smoothness of the solution.
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5. Choosing of the regularization parameter

Parameter of regularizationα can be chosen in different
ways. We shall use the principle of the generalized residual
Tikhonov et al. [8]. Introduce the following functions

β (α) = ‖Ãyα − f̃ ‖2 (25)

γ (α) = ‖yα‖ (26)

µ = inf
y

(
δ + h‖y‖ + ‖Ãy − f̃ ‖

)
(27)

where yα is the function which minimizes functional
Eq. (21),β(α) is the measure of error of our solution. Again,
we emphasize that the attempt of direct minimization of
Eq. (25) leads to the unstable equations. Valueµ gives us a
measure of incompatibility of Eq. (17). If an exact solution
exists thenµ = 0, or elseµ is equal to the minimal residual.
Functionγ (α) is the norm (‘length’) of the solutionyα. Re-
member that we seek the solution with the minimal norm.
Now we are ready to introduce the generalized residual

ρ (α) = β (α)− (δ + hγ (α)+ µ)2 (28)

where δ and h are errors of the right-hand side and the
kernel correspondingly. In accordance with the principal of
generalized residual, the optimal value of the regularization
parameterα∗ can be found from the nonlinear equation

ρ
(
α∗) = 0 (29)

The meaning of Eq. (29) is the following. We chooseα∗
in such a way that the residualβ(α) becomes comparable
with the total error of the method, which consists of the
right-hand side errorδ, the error of the kernel approximation
h and the incompatibility of the initial equationµ.

6. Numerical realization of the algorithm

Let us consider the numerical details of the algorithm
realization. The solution of Eq. (17) can be obtained in
two passes. At the first pass, the measure of incompati-
bility µ is calculated. At the second pass, the nonlinear
Eq. (29) is solved to find optimal parameter of regulariza-
tion. At both passes, it is required to minimize the functional
Mα[y] (Eq. (21)) for different values ofα by solving the
integro-differential Eq. (23). Approximating the integrals in
Eq. (23) by the trapezoid formula with variable step and rep-
resenting the second derivative by finite difference, one can
obtain the following system of linear equations(
Gij + αCij

)
y
(α)
i = Fj (30)

with the symmetrical positive definite matrixGij and tridiag-
onal banded matrixCij . There are many efficient algorithms
to solve such system. In our program we used Cholesky
square root method Collection [9]. This standard subroutine
was translated from the FORTRAN language to C++.

At the first pass, the functional

8δ, h [y] = δ + h‖y‖ + ‖Ãy − f̃ ‖ (31)

must be minimized to calculate the measure of incompat-
ibility µ = minΦ[y]. It is shown [8] that the problem of
minimizing Eq. (31) is equivalent to the problem of mini-
mizing Mα[y] if we chooseα so that the function

ψ (α) = ‖Ãyα − f̃ ‖ + h‖yα‖ (32)

will take on a minimum value. In this program the
golden-section method was used to minimize Eq. (32). At
first, the interval which contains a minimum is roughly esti-
mated, then the exact position of this minimum is found by
the iterative refinement of the interval in the golden ratio.
The functionψ(α) is calculated at each step as follows. For
a givenα, the functionyα which minimizes the functional
Mα[y] is found by solving the system of linear Eq. (30).
Next, this function is substituted to the right-hand side of
Eq. (32) to find a value ofψ(α).

At the second pass, nonlinear Eq. (29) is solved by the
chord method usingµ calculated at the first step. The initial
values ofα0 andα1 can be taken in such a way thatρ(α0)
and ρ(α1) are positive andρ(α0) > ρ(α1). Such initial
values can always be found. In this case, the sequence ofαn
obtained during iterations of the chord method

λ0 = λ0 − (λ0 − λ1) ρ (1/λ0)

ρ (1/λ0)− ρ (1/λ1)
, αn = 1

λn
,

λ0 = λ1, λ1 = λn, (33)

is monotonic, the residualρ(1/λn) is positive for alln and
the sequence converges. Ifh ≥ 0 the convexity ofρ(α) can
be violated. It means that for some termsαn the residual can
be negative, i.e.ρ(αn) < 0. In this case we must use not the
chord method, but the modified chord method:

λn = λ0 − (λ0 − λ1) ρ (1/λ0)

ρ (1/λ0)− ρ (1/λ1)
, αn = 1

λn
,

if ρ (1/λ0) ρ (1/λn) < 0, then λ1 = λn,

if ρ (1/λ1) ρ (1/λn) < 0, then λ0 = λn.

(34)

Satisfaction of one of these inequalities can be guaran-
teed. Each iteration of the chord method begins with the
calculation ofρ(αn). For a givenαn, the minimum of the
functionalMα[y] is found by solving Eq. (30), next, this so-
lution is substituted in the right-hand side of Eq. (28) to find
the residual. The algorithm, described above, was realized
as a program in Watcom C++ 10.0.

7. Results and discussion

The numerical simulation was carried out to com-
pare the accuracy of two different methods of the recon-
struction of the radius distribution function. An artificial
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Fig. 3. Artificial normalized radius distribution function of the particles.

non-symmetrical radius distribution function was chosen as
follows (Fig. 3)

q (r) = r2

0.739386

(
1 − exp

(
− 1

r5

))
. (35)

The normalized coefficient was chosen in such a way that
Eq. (1) is satisfied. The sedimentation curve of the particles
for a given radius distribution function can be easily obtained
from Eq. (6)

P (t) = 1 −
∫ r∗(t)

0
q (r) (1 − r2t)dr (36)

The term 2/9g1ρ/ηH was set equal to unity to make the
valuest andr of order unity. This is needed to avoid a sac-
rifice of accuracy during the numerical calculations. Such
transformation always can be done by the appropriate choice
of units. The sedimentation curve, calculated by means of
Eq. (36), is shown in Fig. 4. Adding noise to the calculated
sedimentation curve simulates experimental errors. The di-
rect problem of obtaining the sedimentation curve from the
radius distribution function is much more easier than the in-
verse one. Now we are ready to solve the ill-posed inverse
problem of the reconstruction of the radius distribution func-
tion from the sedimentation curve.

We shall start from approach (b) based on the calculation
of the second derivative from the sedimentation curve Eq. (8)
(see Section 1). The results of this calculation are shown in
Fig. 5. The second derivative was calculated by means of
the solution of the integral Eq. (10) where the kernel and the
right-hand side are given by Eq. (12). Tikhonov regulariza-
tion method was used to stabilize the solution. In general,
this method reconstructs the original distribution with satis-
factory accuracy, but, in the range of small equivalent radii,
nonphysical oscillations appear. They are caused by noise
added to the sedimentation curve. Information about the first

Fig. 4. Simulated sedimentation curve. The system of units is chosen in
such a way thatA = 1.

derivative (from the sedimentation curve) at the origin is
needed to calculate the right-hand side of the integral equa-
tion for the second derivative (see Eq. (12)). It can be found,
for example, by means of the first difference. Of course, we
could apply Tikhonov method to find the first derivative and
then to use its value at zero in the future, but at the bounds
of the interval the derivative is reconstructed with big errors
and it was found that using the first difference is preferable.
Uncertainty inP′(0) strongly affects the appearance of the
nonphysical oscillations in the solution. Method (a) based
on the direct solution of the integral Eq. (7) is free from such

Fig. 5. The equivalent radius distribution function reconstructed by cal-
culating the second derivative. Nonphysical oscillations at the beginning
of the curve are caused by noise added to the sedimentation curve to
simulate instrumental errors.
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Fig. 6. Radius distribution function reconstructed by means of direct
solution of the original integral equation. This approach gives smooth
curve free of nonphysical oscillations.

uncertainty. It was shown that in both cases we must solve
the integral equation. Hence, using the ‘explicit’ equation
formula 8 does not give us any advantage and direct solution
of the original integral Eq. (7) is more preferable.

The radius distribution curve reconstructed by solving the
original integral Eq. (7) is shown in Fig. 6. It is clear that
this approach is much better than that based on the deriva-
tive reconstruction. The solution is completely free from the
nonphysical oscillations, and is smooth and stable. Some di-
vergence in the range of big equivalent radii can be described
as follows. This part of the curve is formed by quickly sed-
imenting particles with big radii. The existence of a mini-
mal time sampling interval results in finite resolution in the
equivalent radii. The time sampling interval at the begin-
ning of the sedimentation curve is equal to1t = 0.05. This
means that, during the period from the beginning of the ex-
periment to the first measurement, all particles with radii
r > r∗ will sediment. Remember that in the chosen system
of units, sediment time and equivalent radius are related by
the following formula

r∗ =
√

1/t.

Hence, from such ‘measurements’ (remember that we
use the artificial data), we cannot obtain information about
particles with radiir > r∗ ≈ 4.5. Actually, the restriction
is more stronger. The first measurement gives us the sed-
imented weight of all particles with radii greater thanr∗.

Only the second measurement gives us the weight of parti-
cles with radii in the range betweenr and r + 1r. So we
need at least two measurements to obtain significant infor-
mation for the reconstruction of the radius distribution func-
tion of particles with big radii. Hence, the maximum reliable
equivalent radius is the following

rmax ≈
√

1

21t
.

In our case,rmax ≈ 3.2.

8. Conclusion

We carried out a comparison of two methods which recon-
struct the radius distribution function from the sedimentation
curve. The first method is based on the calculation of the
second derivative from the sedimentation curve. The second
one is based on the solution of the original integral equation
which describes the sedimentation process. It is shown that
this problem is ill-posed. Both of these algorithms use the
regularizing procedure for stabilizing the solution. In both
cases the regularization is based on Tikhonov method. It is
shown that the approach based on the solution of the orig-
inal integral equation is much more stable than that based
on the derivative reconstruction.

This method can be used for reconstructing a radius distri-
bution function with the several peaks as well. The package
of computer programs which implement this method can be
used as a software component of the monitoring system of
the quality of powder fineness in various flow processes.
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